轻松的日子过得快,转眼就过去了一年多。比起他的数学才能来,哥德巴赫与人打交道的能
小彼得是阿列克谢的独生子,也就是彼得大帝的孙子。他此 时 11 岁,是罗曼诺夫王朝唯一的男性继承人,因此对于他的影响是一件很重要的事情。当时把持
提到缅希科夫(1673-1729),可以说是一位奇才。他少年时在莫斯科街头以卖馅
1727 年 5 月,叶卡捷琳娜一世去世,12 岁的小彼得继位, 称彼得二世(1727-1730 在位)。此时的朝政大权仍由缅希科夫把持,但他对于金钱和权力的过分贪婪,招致了很多
缅希科夫一倒台,他指派的家庭教师只得走人。1727 年底, 哥德巴赫再次被推荐,当上了彼得二世的家庭教师。这样, 哥德巴赫的宁静日子就已成过去,他也要经常关心俄国的政治风云了。
就在叶卡捷琳娜一世去世的那一天,欧拉来到了圣彼得堡。 此时的欧拉是一位 20 岁的青年,他是约翰 ? 伯努利的学生,也是约翰的儿子丹尼尔的好朋友。丹尼尔得知圣彼得堡科学 院医学部可能还有职位,就马上写信告诉了欧拉。于是,欧 拉一面与科学院联系,一面突击学习生理学,并在巴塞尔大 学旁听了医学讲座。接到了去圣彼得堡的邀请后,欧拉马上 动身,谁知正赶上女沙皇去世,情况有变,医学部的职位没了着落。欧拉感到很绝望,束手
欧拉(Leonhard Euler,1707-1783)是瑞士巴塞尔人,他的 父亲是基督教加尔文教派的牧师,曾经听过雅各布 ? 伯努利 的课。当时教会势力很大,牧师的社会地位普遍要比科学家高,这和现代的情况很不相同。因
欧拉遵从父亲的意见,进了巴塞尔大学,学习神学和希伯 来语等。然而他在数学课上的卓越表现引起了约翰 ? 伯努利 的注意,于是约翰慷慨地每周给欧拉单独辅导一次,在此过 程中欧拉也和丹尼尔有了交往,彼此成了要好的朋友。欧拉17 岁取得硕士学位后,约翰和丹尼尔说服欧拉的父亲,没有让欧拉去作牧师,这实在是数学界
在欧拉到达圣彼得堡之前的两个月,牛顿在伦敦逝世。按照法国启蒙运动思想家伏尔泰所说,
由于丹尼尔的关系,哥德巴赫和欧拉很快就熟悉起来了, 涅瓦河畔散步又多了一个伙伴。哥德巴赫比欧拉年长 17 岁, 在那个时代几乎是一代人的差距,哥德巴赫欣赏欧拉的聪 明和勤奋,欧拉钦佩哥德巴赫的见多识广,他们之间是一种忘年之交。
彼得二世上台后不久,缅希科夫就被流放到了西伯利亚, 朝政由一些保守派势力把持。1728 年 2 月初,彼得二世将朝廷从圣彼得堡迁回莫斯科,这是保守派卷土重来的一个标志。2 月底,彼得二世在克里姆林宫举行加冕大典。此时 的圣彼得堡只是名义上的首都,科学院仍在运行,但多少有些冷清。
哥德巴赫作为彼得二世的家庭教师,也跟着来到了莫斯科。 加冕后的彼得二世,还只是个 13 岁的少年,十分贪玩,不 爱学习,也没有能力管理朝政。彼得二世经常带着比他大6 岁的姑姑伊丽莎白和一些青年贵族外出郊游和打猎,读书只是一个点缀。莫斯科郊外有大片
据记载,哥德巴赫还教过彼得二世的一个姑姑,应该就 是伊丽莎白,因为彼得二世 的姑姑安娜一直在她自己的 属地,别的姑姑都远嫁到了 国外。哥德巴赫的教学任务 不重,所以他有时间思考数学,并且与丹尼尔和欧拉通信讨论问题。哥德巴赫与欧 拉的通信从 1729 年开始, 一直持续到 1763 年,就是 哥德巴赫去世的前一年。
由于彼得二世年纪小,又无得力的大臣辅佐,朝政比较 混乱。这种情况持续了两年 多,1730 年 初, 彼 得二世得了天花,这在当时是不治 之症,因而他很快就病逝了。 彼得二世没有后代,这样罗曼诺夫家族的男性继承人就断绝了。
最高秘密委员会随即举行 会议,经过种种考虑,最后选定彼得大帝的侄女安娜 ? 伊凡诺夫娜(1693-1740) 作为新沙皇。此时安娜正在库尔兰做公爵,她统治的库尔兰公国位于现在拉 脱维亚的西部,面积很小, 但其战略位置却相当重要。 当年彼得大帝将安娜嫁给 了库尔兰的威廉公爵,婚后不久威廉病逝。安娜继任公爵后,一直住在库尔兰,对于俄罗斯
安娜突然接到让她当沙皇的通知后,顿感喜从天降。最高秘密委员会还让特使带去一份协议
随后,安娜对莫斯科的贵族们 进行了大清洗,因为担心有人报 复,1732 年, 安娜又将朝廷迁回到圣彼得堡。安娜主要依靠她的情夫比龙来管理朝政,比龙是生长在库尔
由于哥德巴赫的为人处世深得皇家的信任,在彼得二世病逝后,哥德巴赫被挽留在宫中,继
在这期间,哥德巴赫的朋友圈里有些变化。丹尼尔由于不太适应圣彼得堡的严寒气 候等原因,于 1733 年回到了温暖的家乡巴塞尔,欧拉接替了丹尼尔的位置。在巴 塞尔,丹尼尔先是担任解剖 学和植物学教授,之后成为 生理学教授,后来又成为物理学教授,他的兴趣更集中在数学的应用方面。丹尼尔回 到巴塞尔后,和欧拉进行了长达 40 多年的学术通信。在通 信中,丹尼尔向欧拉提供重要的科学信息,而欧拉则用杰 出的分析才能和推理能力,给予迅速的帮助。而哥德巴赫 与丹尼尔之间则没有进行类似的学术通信,其原因是哥德巴赫把主要精力用在了管理工作和
大师风采
当时接替丹尼尔的欧拉只有 26 岁,却已初显大师风采,他 在数学的理论和应用两方面都做出了很大贡献。在大学微积分教程中,我们常会看到欧拉变
早在欧拉 19 岁的时候,他就以一篇研究船桅最佳布置问题 的论文,参加巴黎科学院的有奖征文活动,获得了荣誉提名。从 1730 年代中期开始,欧拉以很大的精力来研究航海和船 舶建造问题,这些问题对于俄国的海军建设是有现实意义的。后来,欧拉还根据这些积累的
由于航海学的需要,欧拉研究了太阳、月亮和地球在相互间 的万有引力作用之下所产生的运动,特别是月亮的运动规 律。欧拉提出了关于月亮运动的一种新理论,根据这种理论, 天文学家制成了一张月亮运行表,它对于舰船导航很有价 值。欧拉还写过许多关于彗星和行星运动的论著,在他临去世之前,仍在考虑天王星的轨道
在接替了丹尼尔的位置之后,欧拉就打算在俄罗斯安家了,1733 年冬天,他和一位瑞士画师的女儿结了婚。欧拉很享 受婚后安逸的生活,灵感泉水般涌现,下笔如有神助,就像 法国物理学家弗朗索瓦 ? 阿拉戈所说,“欧拉计算时毫不费 力,就像人在呼吸,或鹰在翱翔一样轻松。”从婚后第二年起,欧拉的 13 位子女陆续降生,可惜只活下来 5 位,其余都在 幼年时夭折。欧拉很喜欢孩子, 他常常是抱着一个婴儿写作他 的论文,而大一点的孩子们在 他周围玩耍嬉戏,欧拉在工作 的同时尽享天伦之乐。
虽然俄罗斯的政治风云时常变幻,但科学院里并没有科学家受到政治上的迫害。这主要是 因为,俄国的统治阶层迫切需要科学家们来提高俄国的综合国力,而当时欧洲各国对于科学
1740 年 10 月,安娜女皇去世。她生前指定她外甥女的儿子伊凡继承皇位,称伊凡六世(1740-1
伊丽莎白 ? 彼得罗芙娜(1709-1762)是彼得大帝和叶卡捷琳娜一世的小女儿,血统非常高贵,只
1741 年年底的一天,伊丽莎白乘一架雪橇来到近卫军的营房前,她用富有感召力的声音召来了3
1740 年 5 月,28 岁的普鲁士新国王腓特烈二世(1740-1786 在位)登基。他一上台,就 锐意进行法律、经济、教育和军事等方面的改革,致力于建 立廉洁高效的政府机构,自称是“国家的第一仆人”,同时 积极强化军队建设。在腓特烈二世的统治下,普鲁士的领土 充分扩张,经济迅速发展,国力日益昌盛,为德意志的最终 统一打下了坚实基础,因此后世称他为腓特烈大帝。
柏林科学院成立于 1700 年,到了 1740 年已经有一些衰落的 趋势。为了重振柏林科学院,腓特烈大帝热情地邀请欧拉去 柏林工作。1741 年 7 月,欧拉来到柏林,他一直在柏林呆了25 年。欧拉并不是只会在书斋里写文章,他是一个有抱负、 有管理才干的人,为了寻求更大的施展空间来到了柏林,而 当时的俄国正处在乱糟糟的状态,让人对未来无法预料。
欧拉担任了柏林科学院的数学部主任,他还参与了其它许 多行政事务,如提出人事安排,监督财务,管理天文台、 图书馆和植物园,以及出版历书和地图等。欧拉鼎力协 助科学院院长莫佩蒂,在恢复和发展柏林科学院的过程中 发挥了重大作用。在莫佩蒂外出期间,由欧拉代理院长。1759 年莫佩蒂逝世后,欧拉虽然未被正式任命为院长,但 他一直是科学院的实际领导者。
欧拉还担任过普鲁士政府关于安全保险、退休金和抚恤金 问题的顾问,并为腓特烈大帝了解火炮方面的最新成果, 设计改造运河,也曾主管过普鲁士皇家别墅水利系统的一 些设计工作。
在柏林期间,欧拉的研究工作依然非常活跃。他提出了理 想流体模型,建立了流体运动的基本方程,从而奠定了流 体动力学的基础。他和克莱罗(A. Clairaut)、达朗贝尔(J. R. D’Alembert)一起推进了月球和行星运动理论的研究。他 与丹尼尔 ? 伯努利和达朗贝尔之间关于弦振动问题的研讨, 推动了数学物理方法的发展。他还出版过《光和色彩的新理论》一书,解释了一些光学现象。
欧拉所处的时代被称作是数学上的分析时代,他在其中做出 了最杰出的贡献。约翰 ? 伯努利在给欧拉的信中写道:“在 我介绍高等分析的时候,它还是一个孩子,而你正在将它带大成人。”欧拉的《无穷小分析
由于受 18 世纪启蒙运动思想的影响,腓特烈大帝实行一种叫做“开明专制”的统治。“开明专制”的
在腓特烈大帝的宫殿里,经常是灯火通明,高朋满座,大家兴致勃勃地讨论各种问题。作为
哲学一直是欧拉的弱项,对于那些天赋人权、自由平等、君主立宪、信仰自由等等新鲜说法,一
欧拉与腓特烈的那个圈子渐渐有些话不投机,加上欧拉和腓特烈在科学院的管理上又产生了
达朗贝尔是著名的法国数学家、物理学家和天文学家,虽然 他的科学成就无法与欧拉相比,但他担任过法国第一部《百 科全书》的科学副主编,这部全书对于宣传启蒙运动思想起 到了很重要的作用,因而达朗贝尔更对腓特烈大帝的心思。1764 年,腓特烈大帝邀请达朗贝尔到柏林王宫住了 3 个月, 想请他担任柏林科学院院长。达朗贝尔不想移居柏林,并且 认为欧拉更适合院长之职。腓特烈出于他自己的一些考虑, 始终没有任命欧拉为院长。
1766 年,欧拉一家回到圣彼得堡,叶卡捷琳娜二世以皇室 的规格接待了他们。女皇不但为他们提供一栋配有高档家具 的房子,而且还派了一位御厨专门负责他们的膳食。每到欧 拉家的晚餐时间,枝形吊灯散发着温暖的光芒,橡木长条桌 上摆上纯银的餐具,餐盘里盛着黄油煎大马哈鱼、烤小牛排、 龙虾色拉、奶油烤杂拌等各种食物,鱼子酱抹大列巴(俄式大面包),红菜汤飘着香气,凡
欧拉对于圣彼得堡科学院的工作是驾轻就熟的,因为他在柏 林期间,俄国政府还一直付给他年薪,欧拉也将他的部分论 文寄到俄国发表,并且给予圣彼得堡科学院很多帮助和指点。回到俄国之后,由于白内障的
香飘俄罗斯
让我们再回到 1741 年的俄国。伊丽莎白女皇(1741-1761 在位)上台之后,彻底驱除了宫廷中的德国势力,并且恢复了 彼得大帝的所有改革措施,以及被安娜女皇解散的枢密院, 用法律的形式确定了贵族特权,建立起一个能够吸收各阶层 精英的文官制度。伊丽莎白女皇可以说是俄国开明专制的始 创者,自她以后,俄国的各项国家制度才真正地成熟起来。
国事初定,伊丽莎白女皇心情愉悦,打算好好享受一下生活。在彼得大帝时代,作为公主的
当时的法国,正流行一种称为“洛可可”的艺术风格,它 的特点是纤巧、精美、幽雅、华丽。洛可可风格始于 18 世 纪初,经国王路易十五的情妇蓬帕杜夫人大力倡导,在法 国广为流行。后来的法国王后玛丽 ? 安托瓦内特,也非常热 衷于洛可可服装,这在 2006 年上映的影片《绝代艳后》中有充分的展现。洛可可服装有夸张的裙撑、打褶的花边、繁复
法国画家弗朗索瓦 ? 布歇是洛可可绘画大师,他的作品多取 材于神话和贵族生活,代表作有“沐浴后的月神戴安娜”、 “维纳斯的凯旋”和“蓬帕杜夫人肖像”等,表现了优雅的 性感和奢华的贵族生活,反映了那个时代人们的审美趣味。
1730 年,法国第一家香精香料公司诞生于南方小城格拉斯。 这里生长着各种花卉,有金黄色的黄绒花,紫色的熏衣草, 白色的茉莉花和缤纷的玫瑰,为香水生产提供了优质原料, 不断出现的香水新产品为人们的生活带来了浪漫和激情。法 国的香水与时装、葡萄酒并称为三大精品产业,是法国人的骄傲。
在伊丽莎白女皇的影响下,法 兰西的时尚也在俄国流行,空 气里似乎弥漫着优雅的芳香, 到处都有和平与繁荣的气息。 在圣彼得堡科学院过了多年平 静生活的哥德巴赫,此时有点 坐不住,又想要去政界了。人 有时候很矛盾,热闹多了就想平静,而平静时间久了又想要热闹了。就性格而言,哥德巴赫
1742 年,凭借宽广的人脉和良好的工作业绩,哥德巴赫被 调到俄国外交部工作,外交部设在莫斯科,哥德巴赫也就 移居到了莫斯科。虽说此时德国人不受欢迎,但哥德巴赫 是个例外。他在俄国工作多年,已经深深扎根在这片土地, 况且还做过伊丽莎白的老师,俄国人早把他看成是自己人 了,和那些来投机做官的德国人不是一类。
珍贵的通信
哥德巴赫与远在柏林的欧拉一直保持通信,讨论各种数学问 题,其中关于数论问题的讨论影响最大。
数论是研究整数性质的数学分支,它的形成和发展经历了漫长的岁月。早先住在洞穴里的原
关于欧几里得(Euclid)生平的记录很少,只知道他在公元前 300 年左右,生活在埃及的亚历山大城,在那里教书授徒。 他所著的《几何原本》一书,凝结了古希腊数学的许多精华, 是数学历史上最著名的、流传最广的教科书。在这本
书里, 欧几里得从点、线、面的定义出发,用几条最基本的公理以 及形式逻辑方法,建立起了欧几里得几何学这个严密的体系。
《几何原本》由13 篇组成,基本上是讲几何学的,也有3 篇(第7、8、9 篇)是讲数论的,其中的一些数论结果今天仍然常用。 比如“算术基本定理”,它是说,每个大于 1 的自然数 n 都 可以分解为素数的乘积
于是,我们可以进一步问,是否存在无穷多个费尔马素数,这与几何学的作图问题很有关系。1
下面两封信被归于数学史上最珍贵的通信之列,一封是1742 年 6 月 7 日在莫斯科的哥德巴赫给在柏林的欧拉的信, 另一封是 1742 年 6 月 30 日欧拉给哥德巴赫的回信。哥德巴赫在信中说:“对于那些虽未切实论证但很可能是正确的
当 m ≥ 1 时, Fm 是形如 4n+1 的正整数。由上述费尔马的一 个命题,如果 Fm 是素数的话,那么 Fm 自然就可以用唯一的方式表成两个平方数之和。哥德巴赫的意思是,在无法保证 Fm 是素数的情况下,看看能否证明弱一点的结果“ Fm 可以用唯一的方式表成两个平方数之和”。欧拉在回信中否定了哥德巴赫的想法,在经过一
即 F5 可以用至少两种方式表成两个平方数之和。
哥德巴赫在信中又说:“类似地,我也斗胆提出一个猜想: 任何由两个素数所组成的数都是任意多个数之和,这些数 的多少随我们的意愿而定,直到所有的数都是 1 为止。例如,
……。”哥德巴赫又在页边的空白处补充道:“重新读过 上面的内容后,我发现,如果猜想对于 n 成立,而且 n+1 可以表成两个素数之和的话,那么,可以严格地证明猜想 对于 n+1 也成立。证明是容易的。无论如何,看来每个大 于二的数都是三个素数之和。”这里哥德巴赫把 1 看成了 素数,下面欧拉也采用这种看法。欧拉在回信中说:“关于‘每个可以分成两个素数之和的 数又可分拆为任意多个素数 之和’这一论断,可由你以前写信告诉我的一个观察(即‘每个偶数是两个素数之和’) 来说明和证实。如果所考虑 的数 n 是偶数的话,那么它 是两个素数之和。又因为 n-2 也 是 两 个 素 数 之 和, 所 以 n 是三个素数之和,同理它也 是四个素数之和,如此等等。
如果 n 是奇数的话,因为 n-1 是两个素数之和,所以 n 是三个素数之和,因此它可以分拆为任意多个素数之和。无论如何,我认为‘每个偶数是两
http://songshuhui.blog.caixin.cn/archiv
没有评论:
发表评论